POON'S SELF-DUAL METRICS AND KÄHLER GEOMETRY

CLAUDE LEBRUN

Abstract

It is shown that the self-dual conformal metrics on connected sums of \mathbf{CP}_2 's recently produced by Y. S. Poon arise from zero scalar curvature Kähler metrics on blow-ups of \mathbf{C}^2 by adding a point at infinity and reversing the orientation.

As noted by many authors ([4], [5], [6]), a complex surface with Kähler metric has anti-self-dual Weyl curvature iff the scalar curvature vanishes. On what would initially appear to be a completely unrelated front, Poon ([8], [9]) has produced positive scalar curvature self-dual metrics on connected sums of two and three complex projective planes. In fact, however, these phenomena are closely related:

Theorem. Let $M = m\mathbf{CP_2}$, $0 \le m \le 3$, be equipped with a self-dual metric g of positive scalar curvature. There exists at least one point $p \in M$ such that $(M - \{p\}, g)$ is conformally isometric to $\mathbf{C^2}$ with m points blown up equipped with an asymptotically flat Kähler metric of zero scalar curvature.

(Remark. The conformal isometry, of course, reverses orientation.)

Proof. Let $\pi\colon Z\to M$ be the canonical projection from the twistor space Z onto M; recall [1] that Z consists of all orthogonal almost-complex structure tensors on M inducing the reverse orientation. There exists ([8], [9]) a complex surface $\Sigma\subset Z$ isomorphic to $\mathbf{CP_2}$ blown up at m points such that $\pi|_{\Sigma}\colon \Sigma\to M$ is a diffeomorphism away from a projective line $L\subset\Sigma$ sent to a point $p\in M$; e.g. when $m=0,\ M=S^4,\ Z=\mathbf{CP_3},\ \mathrm{and}\ \Sigma$ is a hyperplane. By construction, $(\pi|_{\Sigma})^*g$ is a Hermitian metric on $\Sigma-L$ but degenerates at L. Identifying $\Sigma-L$ with $\mathbf{C^2}$ blow up at m points, let

$$\hat{q} = (1 + r^2)^2 (\pi |_{\Sigma})^* q$$

where r is the Euclidean distance from the origin in \mathbb{C}^2 ; this is not only Hermitian, but asymptotically flat, differing from the standard metric only by terms of order $1/r^2$ because the projection $\Sigma \to M$ is standard on the

Received February 10, 1987 and, in revised form, July 20, 1987.

second neighborhood of $L \subset \Sigma$. Notice that the Weyl curvature of \hat{g} is anti-self-dual with respect to the complex orientation.

(The second infinitesimal neighborhood of any twistor line is isomorphic to the second neighborhood of the zero section in $\mathscr{O}(1) \oplus \mathscr{O}(1) \to \mathbf{CP_1}$; this amounts to the fact that any conformal metric is flat to first order, but may be seen more directly from the obstruction theory of [7] via the vanishing of $H^1(\mathbf{CP_1}, T \otimes N^*)$ and $H^1(\mathbf{CP_1}, \hat{T} \otimes \bigodot^2 N^*)$, where $T \cong \mathscr{O}(2)$ is the tangent bundle, $N \cong \mathscr{O}(1) \oplus \mathscr{O}(1)$ is the normal bundle, and $\hat{T} \cong T \oplus N$ is the extended tangent bundle. Since Σ is a blow-up of $\mathbf{CP_2}$, it contains a complex 2-parameter family of projective lines, one of which is L. This implies that the second neighborhood of $L \subset \Sigma$ corresponds to one of the $\mathscr{O}(1)$ factors of $\mathscr{O}(1) \oplus \mathscr{O}(1) \to \mathbf{CP_1}$.)

We now proceed by modifying an argument given for compact surfaces by Boyer [2, p. 522]. Let ω be the (1,1) form associated with \hat{g} , and let β be the 1-form defined by

$$-d\omega = \beta \wedge \omega.$$

Because \hat{g} is anti-self-dual, $d\beta$ is an anti-self-dual 2-form. Letting $B_{\tau} \subset (\Sigma - L)$ be the blow up of the ball of radius r, and letting dV denote the metric volume form of $(\Sigma - L, \hat{g})$, we have

$$\begin{split} -\int_{B_r} \|d\beta\|^2 \, dV &= -\int_{B_r} d\beta \wedge {}^*d\beta = \int_{B_r} d\beta \wedge d\beta \\ &= \int_{B_r} d(\beta \wedge d\beta) = \int_{\partial B_r} \beta \wedge d\beta. \end{split}$$

But β and $d\beta$ are of order $1/r^3$ and $1/r^4$, respectively, so

$$-\int_{\Sigma-L} \|d\beta\|^2 \, dV = \lim_{r \to \infty} \int_{\partial B_r} \beta \wedge d\beta = 0.$$

Hence $d\beta = 0$. But $\Sigma - L$ is simply connected, so $\beta = df$. Hence $d(e^f\omega) = 0$, so $h = e^f\hat{g}$ is Kähler and anti-self-dual, and thus has scalar curvature zero. Since f differs from a constant by terms of order $1/r^2$, h is asymptotically flat. q.e.d.

These Kähler metrics may be written down explicitly for m=0,1. For m=0,h is the standard flat metric on \mathbb{C}^2 . For m=1,h is the metric with Kähler potential on $\mathbb{C}^2 - \{0\}$ given by $\|\overrightarrow{z}\|^2 + \log \|\overrightarrow{z}\|^2$; this metric, first pointed out in this context by Burns [3], is the restriction of the standard product metric on $\mathbb{CP}_1 \times \mathbb{C}^2$ to the blow-up

$$\widetilde{\mathbf{C}}^2 = \{ [\overrightarrow{w}], \overrightarrow{z}) \in \mathbf{CP_1} \times \mathbf{C}^2 \mid \overrightarrow{w} \wedge \overrightarrow{z} = 0 \}.$$

Its remarkable conformal isometry with the Fubini-Study metric is obtained by extending the map $\Phi \colon \mathbf{C}^2 - \{0\} \to \mathbf{C}^2 - \{0\} \colon \overrightarrow{z} \to \overrightarrow{z} / \|\overrightarrow{z}\|^2$ to a diffeomorphism between $\widetilde{\mathbf{C}}^2$ and $\mathbf{CP}_2 - \{\text{point}\}$.

The explicit form of the potentials for m=2,3 remains a topic for further investigation. One may hope to produce an ansatz for the necessary potentials for arbitrary values of m, thereby producing self-dual metrics on all connected sums of \mathbf{CP}_2 's; but while such an ansatz may give the general solution for $m\leq 3$, one should only expect to produce special solutions in this manner for larger values of m. The reason is that the Kähler form gives rise to a solution of the twistor equation $\nabla_{A'}{}^{(A}\omega^{BC)}=0$ and thus to an element of $H^0(Z,K^{-1/2})$. The Riemann-Roch formula predicts that sections of $K^{-1/2}$ must exist for small values of m, but gives no information when m is large; similarly our complex surface Σ need not exist. Nonetheless, there seems to be much to be learned here.

References

- M. F. Atiyah, N. J. Hitchin & I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978) 425-461.
- [2] C. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986) 517–526.
- [3] D. Burns, Twistors and harmonic maps, Amer. Math. Soc. conference talk, Charlotte, NC, October 86.
- [4] A. Derdzinski, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983) 405-433.
- [5] M. Itoh, Self-duality of Kähler surfaces, Compositio Math. 51 (1984) 265-273.
- [6] C. LeBrun, On the topology of self-dual manifolds, Proc. Amer. Math. Soc. 98 (1986) 637-640.
- [7] ____, Fattening complex manifolds, preprint, 1987.
- [8] Y. S. Poon, Compact self-dual manifolds with positive scalar curvature, J. Differential Geometry 24 (1986) 97-132.
- [9] _____, Small resolutions and twistor spaces, J. Differential Geometry, in press.

STATE UNIVERSITY OF NEW YORK, STONY BROOK